Azimuthal HBT measurements of charged pions and kaons in Au+Au 200GeV collisions at RHIC-PHENIX

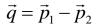
Takafumi Niida from Univ. of Tsukuba for the PHENIX Collaborations

WPCF2011 @ Tokyo University

Outline

- Introduction
- Physics Motivation
- Analysis
 - PHENIX Detector
 - Analysis flow
- Results
 - Pion
 - Azimuthal dependence of HBT radii
 - Fourier components
 - Kaon
 - Azimuthal dependence of HBT radii
 - Eccentricity at freeze-out comparing between pion and kaon
- Summary & Outlook

2

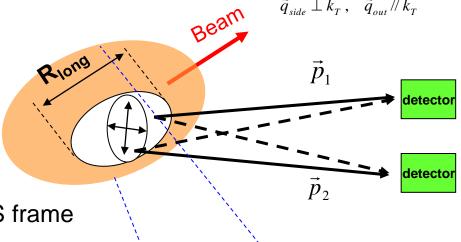

Introduction

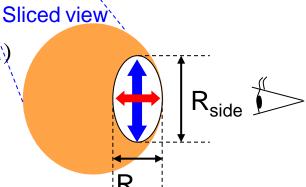
What is HBT?

- Quantum interference between identical two particles
- Powerful tool to explore space-time evolution in HI collisions
- Correlation function c₂ is defined as:

P(p₁) : Probability of detecting a particle $P(p_1,p_2)$: Probability of detecting pair particles

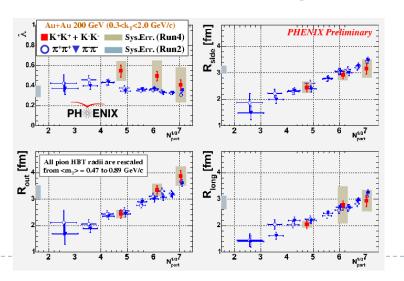
$$\begin{split} C_2 &= \frac{P(\vec{p}_1, \vec{p}_2)}{P(\vec{p}_1) \cdot P(\vec{p}_2)} \\ &= 1 + \left| \widetilde{\rho}(q) \right|^2 = 1 + \exp(-R_{inv}^2 q_{inv}^2) \\ &\quad \text{(If assuming gaussian source)} \end{split}$$

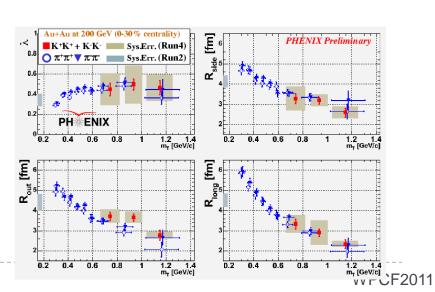

$$\vec{k}_T = \frac{\vec{p}_1 + \vec{p}_2}{2}$$


$$ec{q}_{\mathit{side}} \perp ec{k}_{\mathit{T}} \,, \quad ec{q}_{\mathit{out}} /\!/\, ec{k}_{\mathit{T}}$$

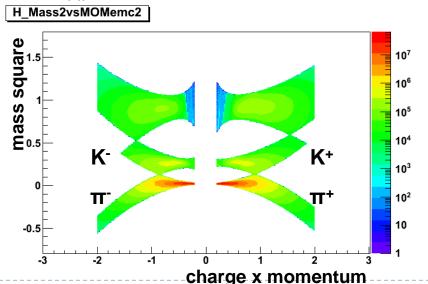
 $C_2 = 1 + \lambda \exp(-R_{inv}^2 q_{inv}^2)$ $=1+\lambda \exp(-R_{side}^2 q_{side}^2 - R_{out}^2 q_{out}^2 - R_{long}^2 q_{long}^2 - 2R_{os}^2 q_{side} q_{out})$

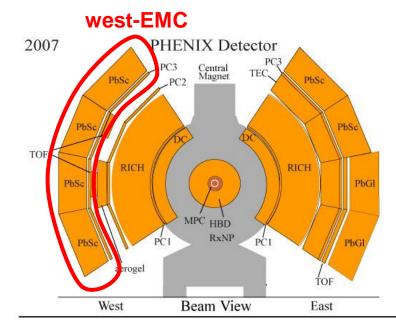

- R_{side} : transverse size of source
- R_{out}: transverse size of source + emission duration
- R_{long}: longitudinal size of source
- R_{os}: cross term between side and out

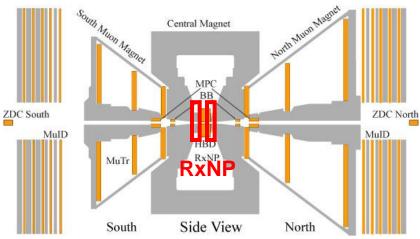



Physics Motivation

- Azimuthal HBT analysis
 - Measures the source shape w.r.t Reaction Plane
 - Source shape at freeze-out is
 - Sensitive to "system lifetime"
 - Related to momentum anisotropy


- HBT Results for charged pion and kaon
 - Centrality and m_T dependence were measured for pion and kaon
 →No significant difference between both species
 - How about azimuthal dependence?





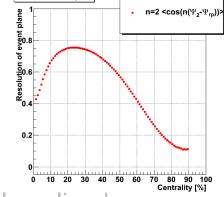
PHENIX Detector

- Vertex, Centrality
 - ▶ BBC, ZDC
- Event plane
 - Reaction Plane Detector(RxNP)
 - 1<|η|<2.8
- Tracking
 - Drift Chamber, Pad Chamber
- PID
 - EMCal (all sectors in west arm)
 - |η|<0.35, ∠|φ=90°</p>

Measure the experimental C₂

- Correct Event Plane resolution
 - Finite resolution reduce the oscillation amplitude of HBT radii
 - U.Heinz et al, PRC66, 044903 (2002)
- ▶ Fitting C₂
 - Sinyukov fitting method (includes coulomb correction and effect of long lived resonance decay)

Measure the experimental C₂

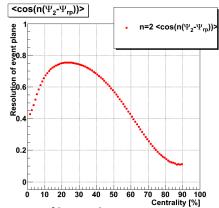

$$C_2 = \frac{R(q)}{M(q)}$$
 R(q): relative momentum dist. of Real pairs M(q): that of mixed pairs

- Correct Event Plane resolution
 - Finite resolution reduce the oscillation amplitude of HBT radii
 - U.Heinz et al, PRC66, 044903 (2002)
- ▶ Fitting C₂
 - Sinyukov fitting method (includes coulomb correction and effect of long lived resonance decay)

Measure the experimental C₂

$$C_2 = \frac{R(q)}{M(q)} \qquad \text{R(q): relative momentum dist. of Real pairs} \\ \text{M(q): that of mixed pairs}$$

- Correct Event Plane resolution
 - Finite resolution reduce the oscillation amplitude of HBT radii
 - U.Heinz et al, PRC66, 044903 (2002)


<cos $(n(\Psi_2-\Psi_m))>$

- ▶ Fitting C₂
 - Sinyukov fitting method (includes coulomb correction and effect of long lived resonance decay)

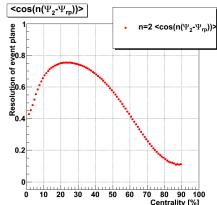
Measure the experimental C₂

$$C_2 = \frac{R(q)}{M(q)}$$
 R(q): relative momentum dist. of Real pairs M(q): that of mixed pairs

- Correct Event Plane resolution
 - Finite resolution reduce the oscillation amplitude of HBT radii
 - U.Heinz et al, PRC66, 044903 (2002)

- ▶ Fitting C₂
 - Sinyukov fitting method (includes coulomb correction and effect of long lived resonance decay)

$$C_{2} = C_{2}^{core} + C_{2}^{halo}$$


$$= [\lambda(1+G)F] + [1-\lambda]$$

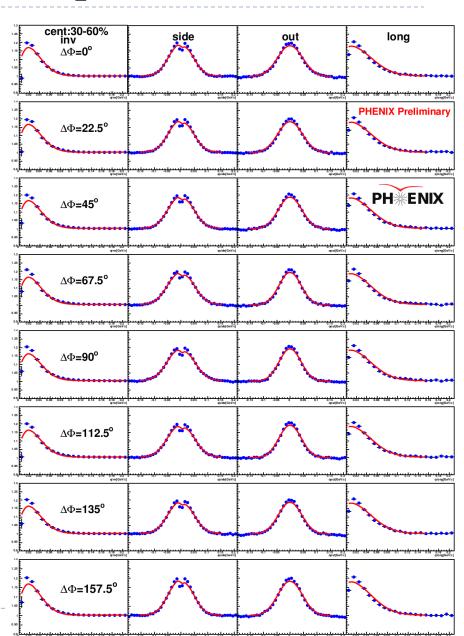
$$G = \exp(-R_{side}^{2}q_{side}^{2} - R_{out}^{2}q_{out}^{2} - R_{long}^{2}q_{long}^{2} - 2R_{os}^{2}q_{side}q_{out})$$

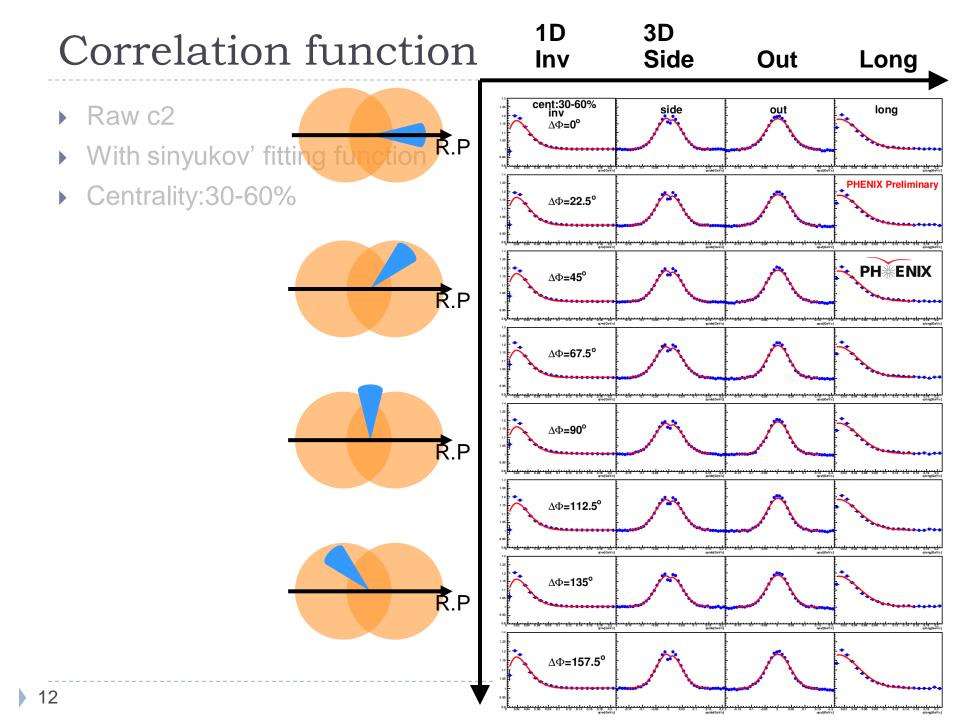
Measure the experimental C₂

$$C_2 = \frac{R(q)}{M(q)}$$
 R(q): relative momentum dist. of Real pairs M(q): that of mixed pairs

- Correct Event Plane resolution
 - Finite resolution reduce the oscillation amplitude of HBT radii
 - U.Heinz et al, PRC66, 044903 (2002)

- Fitting C₂
 - Sinyukov fitting method (includes coulomb correction and effect of long lived resonance decay)

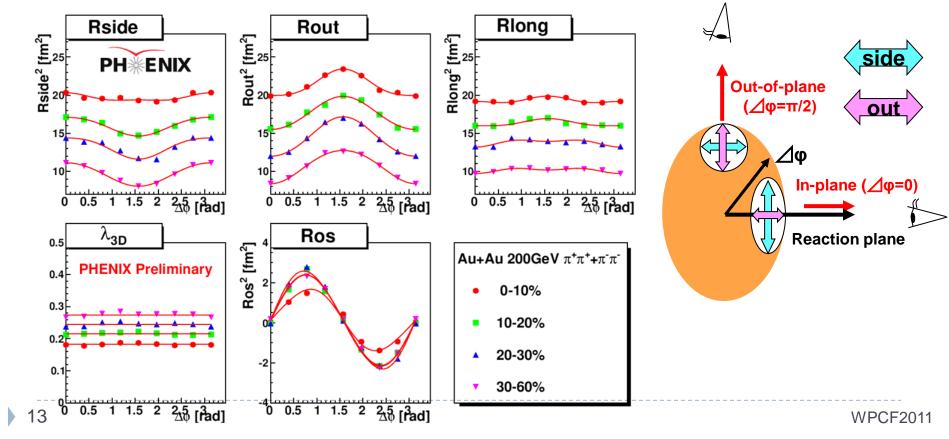

$$C_{2} = C_{2}^{core} + C_{2}^{halo}$$


$$= [\lambda(1+G)F] + [1-\lambda]$$

$$G = \exp(-R_{side}^{2}q_{side}^{2} - R_{out}^{2}q_{out}^{2} - R_{long}^{2}q_{long}^{2} - 2R_{os}^{2}q_{side}q_{out})$$

Correlation function for pion

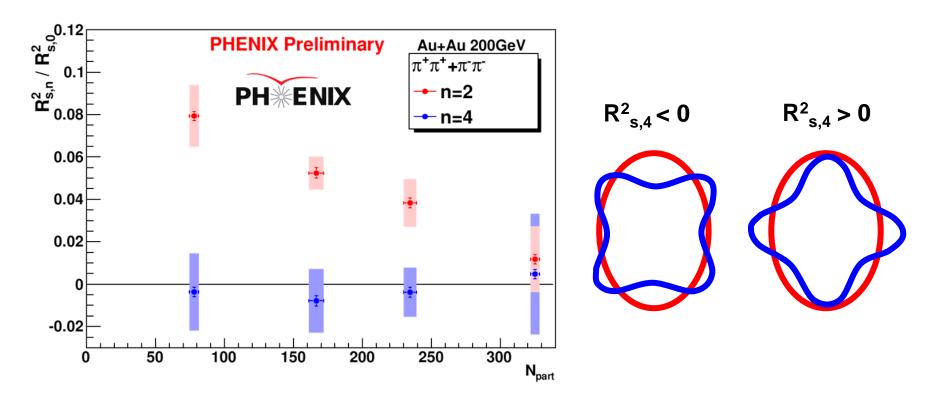
- Raw c2
- With sinyukov' fitting function
- Centrality:30-60%



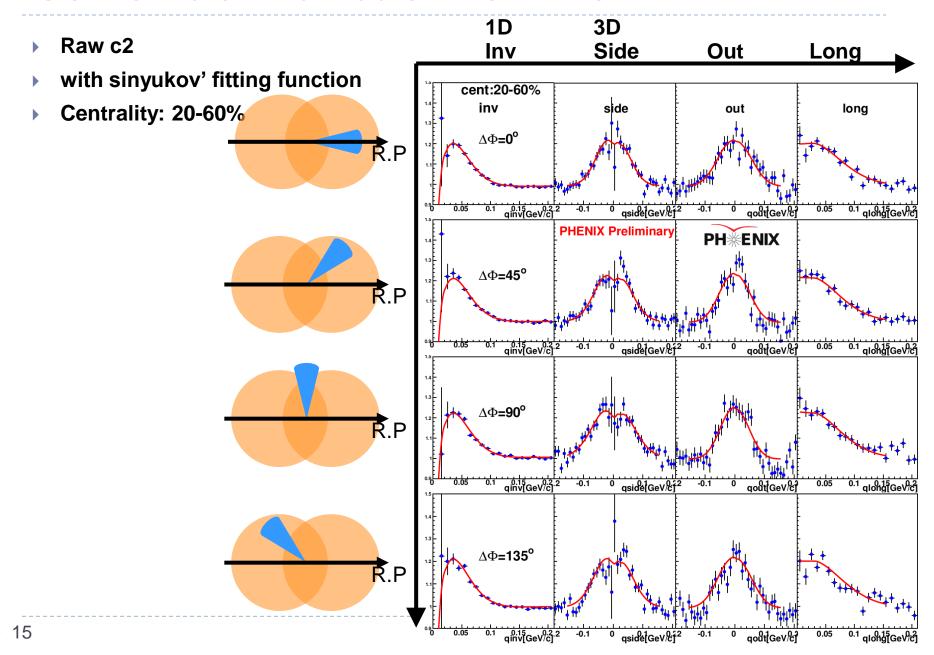
Azimuthal dependence of HBT radii for pion

- Observed the oscillation for R_{side}, R_{out}, R_{os}
- Different emission duration between in-plane and out-of-plane at 0-10%?
- Data points are fitted by cosine series function

$$R = R_{\mu,0}^2 + 2R_{\mu,2}^2 \cos(2\Delta\phi) + 2R_{\mu,4}^2 \cos(4\Delta\phi) \qquad \mu = s, o, l$$


$$R = R_{\mu,0}^2 + 2R_{\mu,2}^2 \sin(2\Delta\phi) + 2R_{\mu,4}^2 \sin(4\Delta\phi)$$
 $\mu = os$

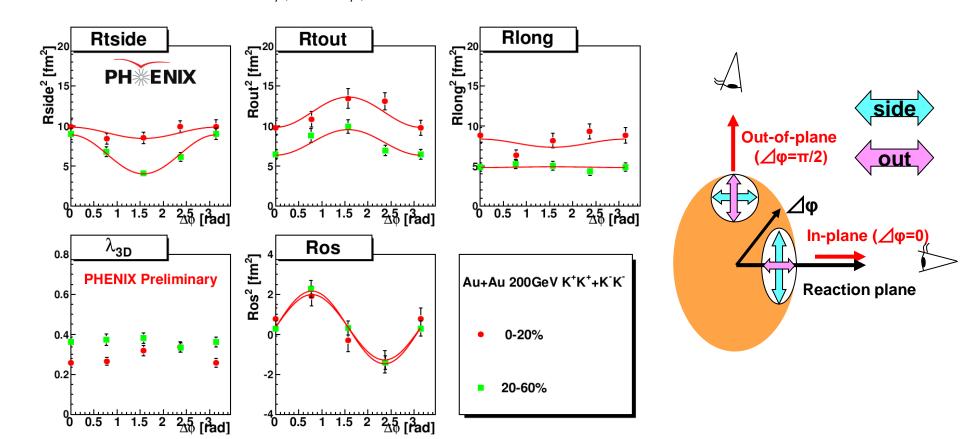
Fourier components of azimuthal HBT radii


Fourier component for R_{side} is calculated by the following fit

$$R = R_{side,0}^2 + 2R_{side,2}^2 \cos(2\Delta\phi) + 2R_{side,4}^2 \cos(4\Delta\phi)$$

Relative 4th order radius seems to have negative value, But it's zero within systematic error

Correlation function for kaon



Azimuthal dependence of HBT radii for kaon

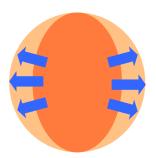
- ▶ Observed the oscillation for R_{side}, R_{out}, R_{os} as well as pion
- Data points are fitted by cosine series function

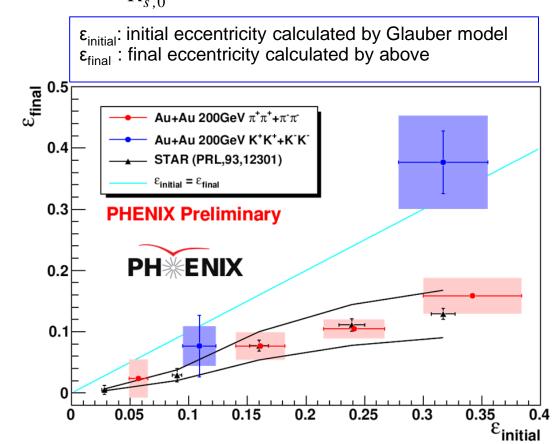
$$R = R_{\mu,0}^{2} + 2R_{\mu,2}^{2} \cos(2\Delta\phi) \qquad \mu = s, o, l$$

$$R = R_{\mu,0}^{2} + 2R_{\mu,2}^{2} \sin(2\Delta\phi) \qquad \mu = os$$

16

Eccentricity at freeze-out


Final eccentricity is defined as $\varepsilon_{final} = 2 \frac{R_{s,2}^2}{R_{s,0}^2}$ by Blast-wave model

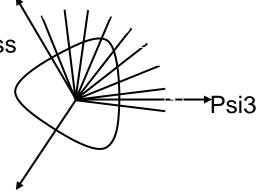

if $\varepsilon_{\text{final}} = \varepsilon_{\text{initial}}$

Same source shape between Initial state and freeze-out

$\underline{\mathsf{if}} \ \mathbf{\varepsilon}_{\mathsf{final}} < \mathbf{\varepsilon}_{\mathsf{initial}}$

Source expands to In-plane direction

- PHENIX result is consistent with STAR result for pion
- ε_{final} of kaon is larger than that of pion and close to ε_{initial}
 Due to different average m_T? or different cross section?


17

Summary & Outlook

- Measurements of azimuthal dependence of HBT radii for pion and kaon in Au+Au 200GeV collisions
 - Observed the oscillation of R_{side} and R_{out} for kaon as well as for pion
 - ▶ 4th order in oscillation of R_{side} for pion is zero within systematic error
 - Final eccentricity of pion is consistent with STAR result
 - Final eccentricity of kaon is larger than that of pion

Outlook

- Need to check m_T dependence of final eccentricity
 - Possible to understand the difference of pion and kaon?
- Comparison with model (ex. blast wave model)
- Azimuthal HBT w.r.t higher order event plane
 - ▶ Analysis using 3rd order event plane is in progress
 - Provides information about relation between v₃ and source shape?

Thank you!

Back up

Data selection

Data

- Run7 Au+Au 200GeV
- Track Cut
 - quality: 63 or 31
 - pion : pt > 0.2[GeV/c] && mom<2.0[GeV/c]</p>
 - \blacktriangleright kaon : pt $\gt 0.3[GeV/c]$ && mom $\lt 2.0[GeV/c]$
 - temc < 50[nsec]</p>
 - 3σ matching cut @ PC3
 - 3σ matching cut @ EMC
 - ecent > 0.1[GeV]
 - EMC-west(all sectors)

PID

- \rightarrow pion: Pi $\langle 2\sigma$ && K $\rangle 2\sigma$ && P $\rangle 2\sigma$
- kaon: Pi>2σ && K<2σ && P>2σ
- Event mixing
 - Zvertex: 30[bins]
 - Centrality: 20[bins] (10[bins] for kaon)
 - Reaction plane by RxP: 30[bins] (20[bins] for kaon)